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Implicit time differencing of the resistive magnetohydrodynamic (MHD) equa-
tions can step over the limiting time scales—such as Alfvén time scales—to resolve
the dynamic time scales of interest. However, nonlinearities present in these equations
make an implicit implementation cumbersome. Here, viable paths for an implicit,
nonlinear time integration of the MHD equations are explored using a 2D reduced
viscoresistive MHD model. The implicit time integration is performed using the
Newton–Raphson iterative algorithm, employing Krylov iterative techniques for the
required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever
forming and storing the Jacobian matrix). Convergence in Krylov techniques is ac-
celerated by preconditioning the initial problem. A “physics-based” preconditioner,
based on a semi-implicit approximation to the original set of partial differential
equations, is employed. The preconditioner employs low-complexity multigrid tech-
niques to invert approximately the resulting elliptic algebraic systems. The resulting
2D reduced resistive MHD implicit algorithm is shown to be successful in dealing
with large time steps (on the order of the dynamical time scale of the problem) and
fine grids. The algorithm is second-order accurate in time and scalable under grid
refinement. Comparison of the implicit CPU time with an explicit integration method
demonstrates CPU savings even for moderate (64 × 64) grids, and close to an order
of magnitude in fine grids (256 × 256). c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The resistive magnetohydrodynamic (MHD) equations present a formidable challenge
for efficient implicit differencing due to the disparity of time scales, the nonlinear couplings
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present in the equations, and the fine grids needed to resolve current sheets. Partially implicit
time-differencing schemes have been employed in multidimensional MHD calculations, in
which the discretized set of partial differential equations (PDEs) is modified by adding
implicitly and subtracting explicitly some suitable operator (called semi-implicit operator),
and only part of the equations is integrated implicitly at a given time step. This allows time
steps larger than the explicit Courant–Friedrichs–Lewy (CFL) stability limit �tCFL while
requiring less work than a direct implicit integration for a given time step. Such partially
implicit techniques include alternating direction implicit (ADI) methods [1, 2] and so-called
Harned–Kerner (H–K) semi-implicit techniques [3–6]. In the former, the semi-implicit op-
erator decouples the integration in the different directions of the problem [7]. Consequently,
it is possible to restrict the implicit integration to one direction while the others remain ex-
plicit, alternating directions every time step. However, the semi-implicit operator in ADI
techniques is of purely algebraic convenience and has no physical significance. In addition,
the implementation of ADI methods to solve the MHD equations is cumbersome due to
the nonlinear couplings and the presence of mixed derivatives, requiring further simplifi-
cations to render the problem tractable. As a result, ADI methods in MHD problems only
allow time steps ∼10–20 times larger than the explicit numerical stability limit for stability
[1, 2].

In H–K semi-implicit methods, the semi-implicit operator slows down the propagation
of the fastest waves in the problem, thus achieving unconditional numerical stability for a
sufficiently large semi-implicit coefficient. However, stability does not guarantee accuracy.
The accuracy of the numerical solution obtained with MHD semi-implicit techniques is
strongly dependent on the choice of the form of the semi-implicit operator [5, 6]. Although
rigorous methods to derive accurate semi-implicit operators are available [8], again simpli-
fications required to make the system tractable, as well as constraints on the magnitude of
the semi-implicit coefficient to guarantee stability, may result in inaccurate semi-implicit
operators. As a consequence, the time step in H–K semi-implicit methods is typically limited
by accuracy considerations. In Ref. [5], a time-step limit of γ�t ≤ 0.05 was reported for
the the m = 1, n = −2 tearing mode, with γ the growth rate. In general, time-consuming
convergence studies are required to find the time-step accuracy limit.

There has been a recent attempt to implement a nonlinear, implicit difference scheme for
the MHD equations [9]. This approach employs block Gauss–Seidel techniques to invert
an approximate Jacobian matrix (and LU-decomposition techniques to invert the blocks) to
obtain convergence, including the nonlinear terms in the equations. However, the simplifica-
tions in the Jacobian (required to render it manageable) limit the applicability of the method,
because they introduce CFL restrictions for large and moderate viscosities and resistivities.
Furthermore, the nonlinear residual is never used to check nonlinear convergence (the size
of the nonlinear update δx is used for convergence), and hence nonlinear errors stemming
from the approximate Jacobian remain unmonitored.

Modern matrix inversion methods such as multigrid-preconditioned Krylov subspace
iterative methods are employed in Refs. [10, 11]. In Ref. [10], an implicit, nonlinear MHD
solver is proposed based on a implicit operator split (IOS) method developed earlier for
hydrodynamic applications [12]. The split algorithm is iterated upon in a Gauss–Seidel
manner, so that some degree of nonlinear consistency is achieved (although no measure
of nonlinear convergence is explicitly provided). As is recognized in [10], large numerical
errors in transients are possible with this algorithm for large implicit time steps unless
enough nonlinear iterations are taken; still, large implicit time steps can be employed in
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the search of stationary solutions. This notwithstanding, it is reported [10] that the implicit
code takes ∼40% more CPU time than explicit counterparts for certain test calculations.

The present document explores efficient paths for fully implicit, fully nonlinear, unsplit
differencing of the resistive MHD equations. The objective is to avoid the sources of nu-
merical error present in semi-implicit and IOS methods for large implicit time steps, and
to demonstrate a computational tool that can accurately describe transients in the dynamic
time scale of interest with implicit time steps comparable to such dynamical time scales
[i.e., such that γ�t ∼ O(1)], even when such implicit time steps are much longer than the
time scale of normal modes (waves) in the system. For this purpose, we focus on a 2D
reduced resistive MHD model, supporting the shear Alfvén wave. Convergence in the non-
linear system is achieved using the Newton–Raphson iterative algorithm. Krylov iterative
techniques [13], implemented Jacobian-free [14, 15] (i.e., without ever forming and storing
the Jacobian matrix), are employed for the required algebraic matrix inversions, because of
their efficiency and the possibility of accelerating convergence via preconditioning. Here,
GMRES (generalized minimal residuals [16]) is employed due to the lack of symmetry in
the algebraic system.

The efficiency of Krylov methods depends heavily on adequate preconditioning [13].
Here, a “physics-based” preconditioner [17, 18] is developed based on a semi-implicit for-
mulation of the reduced MHD equations in vorticity stream-function form. Elliptic systems
in the preconditioner are inverted using low-complexity multigrid methods (MG) [19–21].

The rest of the paper is organized as follows. Section 2 introduces the base model equa-
tions. Section 3 introduces the Krylov methods and the specifics of the Jacobian-free imple-
mentation. In Section 4, the “physics-based” preconditioner for this particular application
is developed. Validation and efficiency results of the implicit algorithm are presented in
Section 5, where the following is numerically demonstrated:

1. The algorithm performs nearly optimally under grid refinement (the number of Krylov
iterations scales very weakly with N , the total number of mesh points).

2. The algorithm obtains a sublinear scaling of the number of Krylov iterations with the
implicit time step, which results in a favorable CPU time scaling.

3. The algorithm features second-order-accurate time step convergence.
4. Implicit time steps on the order of the dynamical time scale are possible without

sacrificing accuracy.

Finally, we conclude in Section 6.

2. 2D REDUCED MHD MODEL

In the 2D reduced MHD (RMHD) formalism, the magnetic field component in the ig-
norable direction Bz is much larger than the magnitude of the poloidal magnetic field Bp.
As a result, Bz ≈ constant, the poloidal velocity v is incompressible (∇ · v = 0), and the
general MHD formalism reduces to [22–24]

∇2	 = ω, (1)(
∂t + v · ∇ − η

µ0
∇2

)
� + E0 = 0, (2)

ρ(∂t + v · ∇ − ν∇2)ω + Ṡω = 1

µ0
B · ∇(∇2�), (3)
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where 	 is the poloidal velocity stream function (v = z × ∇	), ω is the vorticity in the
poloidal plane (ω = z · ∇ × v), � is the poloidal flux function (which gives Bp = z × ∇�),
B = Bp + Bzz is the total magnetic field, and ρ is the density (which is taken as constant).
Sources E0 (the applied electric field in the z direction) and Ṡω have been included to balance
the decay of the equilibrium due to transport terms. The transport parameters (the kinematic
viscosity ν and the resistivity η) are assumed constant. We note that B · ∇ = Bp · ∇ since
∂z = 0, but we keep B for the sake of generality.

Equations (1)–(3) are normalized as follows: B is normalized to the poloidal magnetic field
at the wall in equilibrium Bpw, ρ to ρ0, lengths to the characteristic length in the y-direction
L y , and the time to the poloidal Alfvén time τA = L y/vA, where vA = Bpw/

√
ρ0µ0 is the

Alfvén speed. The normalized set of RMHD equations reads

∇2	 = ω, (4)(
∂t + v · ∇ − 1

SL
∇2

)
� + E0 = 0, (5)(

∂t + v · ∇ − 1

Re
∇2

)
ω + Ṡω = B · ∇(∇2�), (6)

where SL = µ0 L yvA

η
is the Lundquist number and Re = L yvA

ν
is the Reynolds number. All

magnitudes in the equations are dimensionless at this point.
Equations (4)–(6) are discretized using a theta difference scheme, as follows.

∇2	n+1 = ωn+1, (7)

�n+1 − �n

�t
+ [v · ∇�]n+θ − ∇2�n+θ

SL
= −E0, (8)

ωn+1 − ωn

�t
+ [v · ∇ω]n+θ − ∇2ωn+θ

Re
= [B · ∇(∇2�)]n+θ − Ṡω, (9)

where quantities at the n + θ time level are calculated as ξ n+θ = θξ n+1 + (1 − θ)ξ n , with
θ a shifting parameter [0.5 ≤ θ < 1 for the method to remain implicit; θ = 1 is first-order
backward Euler, θ = 0.5 is second-order Crank–Nicolson (CN)]. Second-order accuracy
in time is crucial for the ability to use large implicit time steps that follow the dynamical
time scale accurately (see Section 5.2.1 for numerical evidence). While CN is second-
order accurate in time, for sufficiently large implicit time steps it is known to “ring” (i.e., to
propagate weakly damped short-wavelength harmonics) in stiff problems (such as diffusion
operators in this context) [25, 26]. CN ringing can be avoided while preserving second-
order accuracy by employing the so-called “Rannacher time stepping” (in which the second-
order time evolution is preceded by at least two first-order backward Euler steps to damp
short-wavelength harmonics on the grid), and/or by redefining the shifting parameter as
θ ≈ 1

2 + c�t , where c is related to the dynamical time scale of the problem [25, 26]. In
this paper, Rannacher’s time stepping is employed unless otherwise specified, and no CN
ringing was observed.

Spatial operators are discretized using second-order centered finite differences, except for
the advection terms, which are discretized using quadratic upstream interpolation (QUICK
[27]). Notice that the first equation in the previous set of difference equations does not
involve a time step and represents a purely elliptic constraint. This constraint must be
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satisfied to the prescribed tolerance independently of the time step chosen, thus imposing
additional strain on the solver.

3. JACOBIAN-FREE NEWTON–KRYLOV SOLVER

Once the RMHD equations are discretized in time and space, the next step is to find the
new-time solution xn+1 = {Φn+1,Ψn+1, ωn+1}T from the current-time solution xn by solv-
ing the nonlinear, coupled system of equations in Eqs. (7)–(9), symbolized by G(xn+1) = 0
(where G = {G	, G�, Gω}T ). This is accomplished iteratively with the Newton–Raphson
algorithm, which requires the solution of a series of algebraic systems of the form

Jkδxk = −G(xk). (10)

Here, Jk = ( ∂G
∂x )k is the Jacobian matrix, xk is the kth state vector, δxk is the kth Newton

update (from which the (k + 1)th Newton state vector is obtained, xk+1 = xk + δxk), G(xk)

is the vector of residuals, and k is the nonlinear iteration level. Nonlinear convergence is
achieved when

‖G(xk)‖2< εnewton ‖G(x0)‖2, (11)

where ‖ · ‖2 is the �2-norm, εnewton is the Newton convergence tolerance (set to 10−4 in this
work), and G(x0) is the initial residual. Upon convergence, the solution at the new time step
is found as xn+1 = xk+1.

Each of these iterative steps requires inverting the Jacobian system in Eq. (10). This is
performed here using Krylov methods [13], because of the following:

1. As stand-alone solvers, they are already competitive against direct or standard iterative
techniques and have the capability of increased efficiency via adequate preconditioning.

2. All that these methods require to proceed is the product of the system matrix times
a Krylov vector v, which is provided by the iterative algorithm. In Newton’s method,
the Jacobian-vector product can be calculated using the directional (Gateaux) derivative,
approximated here as

Jkv ≈ G(xk + εv) − G(xk)

ε
, (12)

where ε is small but finite (discussed later in this section). Thus, the evaluation of the
Jacobian-vector product only requires the function evaluation G(xk + εv). There is no need
to form or store the Jacobian matrix, and hence the name Jacobian-free.

3. An additional advantage of not forming the Jacobian matrix is that cumbersome
difference schemes (such as conservative and/or high-order difference schemes) are of
straightforward implementation and maintenance.

Among the various Krylov methods available, GMRES is selected because it guarantees
convergence with nonsymmetric, nonpositive definite systems [16] (the case here because
of flow and wave propagation), and because it provides normalized Krylov vectors |v| = 1,
thus bounding the error introduced in the difference approximation of Eq. (12) (whose
leading error term is proportional to ε|v|2) [28]. However, GMRES can be memory intensive
(storage increases linearly with the number of GMRES iterations per Jacobian solve) and
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expensive (computational complexity of GMRES increases with the square of the number
of GMRES iterations per Jacobian solve). Restarted GMRES can in principle deal with
these limitations; however, it lacks a theory of convergence, and stalling is frequently
observed in real applications [29]. Here, we focus on minimizing the number of GMRES
iterations per Jacobian solve for efficiency, by (i) using inexact Newton techniques [30], and
(ii) improving the condition number of the Jacobian matrix by preconditioning the problem.

The inexact Newton method adjusts the GMRES convergence tolerance at every Newton
iteration according to the size of the Newton residual, as follows.

‖Jkδxk + G(xk)‖2 < ζk‖G(xk)‖2, (13)

where ζk is the inexact Newton parameter or forcing term. Thus, the convergence tolerance
of GMRES is loose when the state vector xk is far from the nonlinear solution, but becomes
increasingly tighter as xk approaches the exact solution, and GMRES works hard only when
the state vector is close to the exact solution. Although the superlinear convergence rate of
the inexact Newton method is possible if the sequence of ζk is chosen properly [31], the
choice ζk = ζ constant, while providing only a linear Newton convergence rate, is found
to be satisfactory efficiency-wise in various Newton–GMRES applications [31]. Although
the optimal value of ζ is application dependent, ζ ∼ 0.1–0.01 is common in the literature
[17, 31, 32], and values of ζ ∼ 5 × 10−2 work well for this application.

Preconditioning consists of operating on the system matrix Jk with an operator Pk

(preconditioner) such that Jk Pk is well-conditioned. The Jacobian-free implementation of
the right preconditioner operator is straightforward when considering the equivalent system:

(Jk Pk)
(

P−1
k δxk

)= −G(xk). (14)

Thus, GMRES will solve

(Jk Pk)z = −G(xk), (15)

and the Newton update δxk is found upon obtaining z by finding δxk = Pkz. Notice that
the system in Eq. (14) is equivalent to the original system for any nonsingular operator
Pk . Thus, the choice of Pk does not affect the accuracy of the final solution but crucially
determines the efficiency of the algorithm.

To solve Eq. (15) using GMRES, it is required to compute the Jacobian-vector product
(Jk Pk)v j (where v j is the Krylov vector of the jth iteration) to proceed. This is implemented
in two steps:

1. Compute y = Pkv j . This is the so-called preconditioning step. Often, Pk is not an
exact inverse of any particular matrix but an approximate inverse—obtained, for instance,
using operator splitting and/or low-complexity MG methods—of the exact Jacobian, or even
an approximate inverse of an approximation of the Jacobian. The specifics of the formation
of the preconditioner operator Pk for this application are discussed in Section 4.

2. Compute Jky using the Jacobian-free approximation Jky ≈ G(xk + εy) − G(xk )

ε
, where ε

is small but finite. Newton convergence is insensitive to ε within a window two to three
orders in magnitude; ε is calculated here as

ε = 10−5

(
1 + ‖xk‖2

‖y‖2

)
.

The first step determines the efficiency of the algorithm (and leaves room for exploration,
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since Pk is in principle an arbitrary nonsingular operator), while the second step deter-
mines the accuracy of the solution [according to the discretization of the nonlinear system
G(xn+1) = 0].

To maximize efficiency, the preconditioning operator Pk should approximate the inverse
of the Jacobian Jk while being relatively inexpensive. There are generally two choices as
to how to approach the preconditioning problem:

1. Algebraic methods: These approximately invert a close representation of the Jacobian
Jk , obtained analytically or numerically, using inexpensive algebraic techniques (such as
stationary iterative techniques, incomplete LU decomposition, multigrid techniques, etc.).
These techniques are “problem independent” (can be employed in a variety of different
problems), but by the same token they cannot exploit specific physics knowledge of the
problem at hand. In addition, algebraic preconditioners typically require forming and storing
the Jacobian matrix.

2. PDE-based or physics-based methods [17, 18]: These integrate an approximate set of
PDEs, obtained, for instance, by simple Picard linearization, by semi-implicit techniques,
and/or by implicit operator splitting (IOS). They do not require forming and storing the
complete Jacobian and, hence, take better advantage of the Jacobian-free implementation
than do algebraic methods. In addition, they can be optimized for the problem at hand.
Although the general concept of physics-based preconditioning can be applied to a large
variety of problems, the details of the implementation are typically “problem specific.”

The latter is explored here, with semi-implicit methods forming the basis of the precondi-
tioner strategy. The next section describes in more detail the nature of the approximations
employed here to construct the physics-based preconditioner. Recall that these approxima-
tions have no bearing on the accuracy of the converged solution, only on the convergence
rate of GMRES.

4. PHYSICS-BASED PRECONDITIONER

Implicit differencing ensures absolutely stable numerical descriptions, for any time step
and level of mesh refinement, by introducing dispersion in waves and by treating elliptic
operators (such as diffusion) nonlocally. However, some of the mechanisms that are sources
of numerical instabilities in explicit methods continue to manifest themselves in implicit
schemes in the form of ill-conditioned algebraic systems, which iterative techniques have
difficulty handling.

There are two sources of ill conditioning in the system of MHD equations: elliptic
operators and hyperbolic couplings. The former manifests itself in a power scaling Nα

(with α > 1) of the computational complexity of iterative solver techniques. (Direct solvers
are in principle suitable for dealing with poorly conditioned matrices; however, they do
not scale adequately for sparse banded systems in 2D and 3D [7, 21].) Elliptic stiffness
is dealt with here with multigrid preconditioning (MG), which employs low-complexity
multilevel solvers [20] to invert the elliptic operators approximately. The multilevel aspect
of MG (which employs a “divide-and-conquer” approach by which the different scales of
the global solution are decoupled in multiple grids of varying mesh refinement) results,
as a solver, in an optimal O(N ) scaling of the computational complexity [33], and, as a
preconditioner, in a number of Krylov iterations virtually independent of the problem size
(see [19, 20] and results in Section 5.2.2).
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Ill conditioning from hyperbolic couplings manifests itself in a loss of diagonal dominance
due to short-wavelength harmonics when the implicit time step is larger than the explicit
wave CFL limit (short-wavelength harmonics are responsible for numerical instability in
explicit methods). This can clearly be seen in this application by an order-of-magnitude
analysis of the blocks in the Jacobian matrix, which formally reads (see the next section for
the derivation of these terms)

J =


−∇2 0 I

−B0 · ∇ 1
�t + v0 · ∇ − ∇2

SL
0

−∇2(v0) · ∇ [−B0 · ∇(∇2) + ∇2(B0) · ∇]
[

1
�t + v0 · ∇ − ∇2

Re

]
. (16)

In normalized units, B0 ∼ vA, the Alfvén velocity. In the regime in which the implicit time
step is much larger than the wave CFL limit ( 1

�t � k · vA), in which flows are typically much
slower than the characteristic Alfvén speed (v0 � vA), and in which transport coefficients
are small (SL , Re � 1), the order of magnitude of the Jacobian blocks is

k2 0 1

kvA
1

�t + kv0 0

kω′
0 k3vA

1
�t + kv0

,

which is clearly non-diagonally dominant when the wavenumber k � 1, and hence handled
poorly by iterative techniques.

It is possible, however, to reformulate the physical equations so that the resulting algebraic
systems are better conditioned. The basic idea is to produce a well-conditioned (diagonally
dominant) second-order parabolic operator from an ill-conditioned, first-order hyperbolic
system of equations by implicitly discretizing the hyperbolic equations and suitably com-
bining them by direct substitution. This is, for instance, the basis of the ICE (implicit
continuous-fluid Eulerian) method for the compressible Navier–Stokes equations [34]. The
procedure can be understood easily with a first-order hyperbolic linear system:

∂t u = ∂xv,

∂tv = ∂x u.

Differencing implicitly in time (with backward Euler for simplicity), we have

un+1 = un + �t∂xv
n+1,

vn+1 = vn + �t∂x un+1.

It is now possible to substitute the second equation into the first to obtain the parabolic
equation

(I − �t2∂xx )u
n+1 = un + �t∂xv

n,

which is equivalent to the set of two discretized equations, but much better conditioned
because the parabolic operator is diagonally dominant.

The goal here is to find a semi-implicit formulation for the RMHD equations that removes
the stiffness associated with the Alfvén wave in the preconditioning stage. Although the
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general guiding principle is the same as in the simple example above, specifics of the
RMHD model (such as the presence of advection and diffusion) make this task difficult.
Furthermore, due to the ω–	 coupling, the vorticity equation contains ∂t∇2	, which in
principle precludes the direct substitution step. The next section describes how to get around
these issues.

4.1. Approximate Formulation of the RMHD System

Krylov techniques are employed here to invert the Jacobian system in each Newton step.
Hence, the construction of the physics-based preconditioner necessarily starts from the
linearized system of equations. For the system in Eqs. (7)–(9), the linearized equations read

L SL δ� = −θδv · ∇�0 − G�, (17)

LReδω = θ [−δv · ∇ω0 + B0 · ∇(∇2δ�) + δB · ∇(∇2�0)] − Gω, (18)

δω = ∇2δ	 − G	. (19)

Here, δ quantities represent perturbations, the subscript “0” represents the solution at the
previous Newton step, {G	, G�, Gω} are the nonlinear residuals, and

Lχ = 1

�t
+ θ [v0 · ∇ − χ−1∇2].

Again, the goal is to reformulate the hyperbolic couplings in these equations as a single
parabolic operator. The procedure is as follows:

1. The first step is to eliminate δω.
2. The resulting system is fourth order in δ	 due to the vorticity-stream-function elliptic

coupling. The next step is to approximate this fourth-order operator by the composition of
two second-order operators, of easier inversion.

3. The final step is to approximate the inversion of the coupled, second-order two-
equation system in δ	 − δ� by the inversion of a single parabolic operator embedded in a
Jacobi iteration scheme.

This section deals with the first two steps. The next section expands on the third step.
We start by noting that δv · ∇�0 = −B0 · ∇δ	, δv · ∇ω0 = −(z × ∇ω0) · ∇δ	, and δB ·

∇(∇2�0) = −[z × ∇(∇2�0)] · ∇δ�. Substituting Eq. (19) into Eq. (18) and regrouping
yields

L SL δ� = θB0 · ∇δ	 − G�, (20)

[LRe∇2 − θ(z × ∇ω0) · ∇]δ	 = θ [(B0 · ∇)∇2 − z × ∇(∇2�0)] · ∇]δ�

− Gω + LRe(G	). (21)

At this point, we note that z × ∇(∇2�0) = ∇2B0 and z × ∇ω0 = z × ∇(∇2	0) = ∇2v0,
because z × ∇ commutes with ∇2. Hence,

LRe∇2 − θ(z × ∇ω0) · ∇ = ∇2

�t
− θ

∇4

Re
+ θ [(v0 · ∇)∇2 − (∇2v0) · ∇].
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The operator in square brackets acting on δ	 can be expressed in Einstein notation as

[(v0 · ∇)∇2 − (∇2v0) · ∇]δ	 = ∂i∂ j [v0 j∂iδ	 − δ	∂iv0 j ] ∼ ∇2(v0 · ∇)δ	, (22)

where we have used ∇ · v0 = 0. In the last step, we have neglected terms with i �= j .
Although this approximation cannot be justified rigorously in general, it is exact for uniform
v0. The approximation will not affect the accuracy of the converged solution (because it
is done only in the preconditioner), and the effectiveness of the resulting algorithm will
be its ultimate justification. Hence, we conclude that LRe∇2 − θ(z × ∇ω0) · ∇ ∼ ∇2LRe.
Identically, we find (B0 · ∇)∇2 − z × ∇(∇2�0) ∼ ∇2(B0 · ∇), and hence the linearized
system in Eqs. (20) and (21) can be approximated, for preconditioning purposes, by

L SL δ� = θB0 · ∇δ	 − G�, (23)

LReδ	 = θB0 · ∇δ� + ∇−2[−Gω − LRe(−G	)]. (24)

The importance of the approximation in Eq. (22) is now obvious, because we have effectively
reduced the order of the δ	-equation from fourth order to two second-order inversions,
hence allowing the direct substitution step to form the semi-implicit operator. The vorticity
perturbation δω is trivially obtained from δ	 by using Eq. (19).

4.2. Formulation of the Semiimplicit Preconditioner

Although Eqs. (23) and (24) represent a great simplification of the original reduced
MHD system, it is still cumbersome as a preconditioner because it requires inverting three
operators (L SL , LRe, ∇2), and it is coupled. The last step toward a single parabolic operator
is to implement a Jacobi iterative scheme in the δ	-equation (which lends the semi-implicit
character to the preconditioner). For this, we split LRe into its diagonal DRe and off-diagonal
MRe parts and define the iterative procedure as

DReδ	
m+1 = −MReδ	

m + θB0 · ∇δ�m+1 + ∇−2[−Gω − LRe(−G	)],

where m is the Jacobi iteration count. Using MRe = LRe − DRe and rearranging, we find

δ	m+1 = δ	m + D−1
Re {θB0 · ∇δ�m+1 + ∇−2[−Gω − LRe(−G	)] − LReδ	

m}. (25)

Combining this result and Eq. (23) (with δ� = δ�m+1 and δ	 = δ	m+1), the final form of
the semi-implicit preconditioner is the iterative procedure defined by Eq. (25) and

PSIδ�
m+1 = −G� + θ(B0 · ∇)

{
D−1

Re ∇−2[−Gω − LRe(−G	)] + [
I − D−1

Re LRe
]
δ	m

}
.

The parabolic operator PSI = L SL − θ2(B0 · ∇)D−1
Re (B0 · ∇) contains the Alfvén wave prop-

agator (B0 · ∇)2 and is much better conditioned than the original hyperbolic system. As
formulated, the preconditioner only requires the inversion of PSI per Jacobi iteration (the
inversion of ∇2 is only required initially to form the right hand sides, and the diagonal
matrix DRe is trivially invertible).

Upon termination of the iteration, the vorticity is trivially found from

δω = ∇2δ	m+1 − G	.
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The preconditioner step outlined above approximates the inversion of the block Jacobian
system Jkδxk = −G(xk) [with Jk having the block structure given in Eq. (16)] as δxk ≈
Pk[−G(xk)], where Pk is the preconditioner operator [Eq. (15)]. The generalization of
the algorithm to apply Pk on arbitrary vectors (as required by the GMRES algorithm) is
straightforward.

The next section dwells on some very specific details of the preconditioner implementa-
tion. These are not required to understand the discussion of the numerical results presented
in Section 5.

4.3. Some Comments on the Implementation of the Preconditioner

In determining the optimal number of Jacobi iterations mmax, there is a trade-off between
the efficiency and the effectiveness of the preconditioner algorithm. Thus, large values of
mmax will result in an effective, but expensive, preconditioner, while small values of mmax

will result in inexpensive preconditioner steps but may lose effectiveness, particularly in
viscoresistive regimes (Stokes’ limit) and/or regimes with large flows (although we have
used the algorithm in Kelvin–Helmholtz configurations with super-Alfvénic flows [35] with
little or no performance degradation). Here, a compromise is reached by using a moderate
number of Jacobi iterations (mmax = 4), and making each iteration as inexpensive as possible
by inverting PSI approximately using a low-complexity MG solver. The latter consists of a
single V-cycle of ngrid grid levels, determined as

ngrid = int{min[log2(Nx ), log2(Ny)]} − 2,

so that the coarsest grid in either axis (given by min [ Nx

2ngrid ,
Ny

2ngrid ]) has at least four points
to support the discretization stencil. The residual at each restriction and prolongation step
is smoothed with three passes of point Jacobi (although line smoothing is preferable for
MG as a stand-alone solver when �x �= �y, its performance as a preconditioner is less
sensitive to these types of issues [19, 20], and point smoothing presents other advantages
for adaptive mesh refinement and parallelization). The Jacobi-smoothed MG solver for
PSI is implemented matrix-free, and only the diagonal elements of PSI need be known to
proceed, as discussed in [20]. This avoids forming and storing PSI, but the matrix–vector
product is nonoptimal. A crucial detail for the effectiveness of the preconditioner is to use
the solution of the previous Jacobi iteration as the initial guess for the MG solve at the
current iteration.

In general, the discretization in the preconditioner need not be of the same order of
accuracy as in the original system of difference equations G(x) = 0. This is particularly
important in the treatment of the advective term, since higher order discretizations of the
advective term are not diagonally dominant for time steps larger than the flow CFL. Here, the
preconditioner features in L SL and LRe a first-order, upwinded discretization of advective
terms, which increases diagonal dominance and produces a robust preconditioner [36].

The discretization of the Alfvén wave propagator in PSI deserves some comments. Since
the operator (B0 · ∇)D−1

Re (B0 · ∇) is self-adjoint and negative definite, its spatial discretiza-
tion has been designed so that the corresponding matrix is symmetric negative definite while
preserving a compact stencil support (in this case, a nine-point stencil).
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5. RESULTS

In what follows, the computational domain is a uniformly discretized Cartesian rectangle
of size Lx × 1. Boundary conditions are periodic in x . In y, we impose no stress (ω = 0),
perfect conductor (� = 0), and impenetrable wall (	 = 0). In all simulations, the Newton
nonlinear convergence tolerance [Eq. (11)] is set to εNewton = 10−4, and the inexact Newton
parameter is set to ζ = 0.05.

5.1. Validation Tests

The code has been benchmarked successfully against explicit fluid and MHD codes in
Kelvin–Helmholtz and tearing problems, respectively. In what follows, the code is tested by
propagating the shear Alfvén wave, and by modeling classical resistive instabilities (tearing
modes).

5.1.1. Wave Propagation

The theta differencing scheme allows dissipation-free wave propagation for θ = 1/2. This
has been tested by propagating shear Alfvén waves in a uniform magnetic field, with zero
physical dissipation (ν = η = 0) and θ = 1/2 (zero numerical and physical dissipation is
possible in this special case because the magnetic field is uniform, but it is not possible in
general). The initial conditions are �0 = −y (i.e., Bx,0 = 1 and By,0 = 0) and ω0 = 	0 = 0.
A standing Alfvén wave is excited with δ� = 10−3 sin(πy) cos( 2π

Lx
x) and δ	 = 0. Simula-

tion parameters are Lx = 3 and vA = 1 (due to normalization). The exact dispersion relation
is ω = ±kx = ±2π

Lx
, and the period is T = 2π

|ω| = Lx = 3 τA. The wave kinetic energy is fol-
lowed in time with �t = �tCFL (where �tCFL is the shear Alfvén wave explicit CFL limit,
given by �tCFL = Lx

Nx
= 0.047τA) on a 64 × 64 grid. The result is depicted in Fig. 1 (solid

line) and shows that there is no amplitude decay, evidence of the absence of numerical
dissipation, and that there are no secular errors in the average of the wave kinetic energy
(the energy is purely oscillatory, neither increasing nor decreasing in average).

When larger time steps are employed (�t = 5�tCFL, dashed line in Fig. 1), phase errors
(dispersion) are starting to be apparent (the wave period increases slightly). This is a natural
consequence of the implicit differencing. The apparent change in amplitude for �t = 5�tCFL

is in fact periodic and due to sampling errors of the wave peak due to the large time step
employed.

While taking even longer time steps with respect to the wave, CFL will inevitably result
in an inaccurate description of the wave propagation speed, for long-time-scale phenomena
the waves will remain balanced in spite of these phase errors because no operator splitting
is introduced. Thus, larger implicit time steps will not result in numerical contamination of
the solution on longer dynamical time scales due to errors propagating on the wave time
scale. This is demonstrated numerically in Section 5.2.1.

5.1.2. Classical Resistive Instabilities (Tearing Mode)

The previous test checks linear wave propagation, in which only certain terms of the equa-
tions enter. Modeling resistive instabilities (tearing modes), however, brings in more physics
and allows us to test both linear and nonlinear physics. The classical tearing mode problem
is initialized with a Harris current sheet �0(x, y) = 1

λ
ln[cosh λ(y − 1

2 )] and 	0 = ω0 = 0.
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FIG. 1. Plots of the Alfvén wave kinetic energy (K.E.) as a function of time (in τA units), propagated with
�t = �tCFL = 0.047τA (solid) and �t = 5�tCFL (dashed).

The parameter λ is the inverse of the characteristic width of the current sheet and determines
the tearing mode growth rate (the larger λ is, the narrower the current sheet and the larger
the tearing growth rate are).

The mode is excited with a perturbation in the poloidal flux δ� = 10−3 sin(πy) cos( 2π
Lx

x).
The simulation parameters are Lx = 3, λ = 5, and Re = SL = 103. The simulation is per-
formed in a 64 × 64 grid with �t = 5τA = 100�tCFL until T f = 250τA, close to saturation.
Plots of �, 	, ω, and the parallel current j‖ = ∇2

⊥� at T f are depicted in Fig. 2, where the
following features of tearing modes are visible:

1. The magnetic island (“cat’s eye”) is visible in the contours of the poloidal flux �.
2. The flow organizes itself into four vortices of alternate sign of vorticity on the sepa-

ratrix, as shown in the stream-function (	) plot.
3. The vorticity ω is strongly concentrated on the separatrix.
4. The parallel current j‖ has a large perpendicular gradient at the separatrix, and j‖ is

nearly equal at the X- and O-points. The latter is expected to hold exactly at saturation,
because ∂t� = 0 and v · ∇� = B · ∇	 = 0 at the X- and O-points, and hence, from Ohm’s
law [Eq. (2)], η j‖ = E0.

The tearing mode exponential growth rate for this simulation is γ = 0.0435. This value has
been validated with results from other codes (specifically, an explicit version of this code—
see Section 5.2.2—and a semi-Lagrangian, spectral explicit RMHD code). The theoretical
scaling of γ with the Lundquist number SL is γ ∼ S−3/5

L for an inertial tearing mode (i.e.,
with negligible viscosity) andγ ∼ S−5/6

L for a viscous tearing mode [37]. For a fixed viscosity
(Re = 103), the tearing mode will behave as viscous when SL is large, and as inertial when
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FIG. 2. Plots of poloidal flux function �, stream function 	, vorticity ω, and parallel current j‖ = ∇2�,
corresponding to a saturated tearing mode (Tf = 250τA) with Lx = 3, λ = 5, Re = SL = 103 in a 64 × 64 grid.

SL is small [37]. These results are reproduced by the code, as shown in Fig. 3. The scalings
break down for small SL , as expected.

5.2. Performance of the Algorithm

Maximizing the efficiency of the solver requires minimizing the CPU time required for
a given computation. The CPU time can be functionally expressed as

CPU ∝ N × T f

�t
× nNt × nG M × (a + b × nG M), (26)

where N = Nx Ny is the total number of mesh points, T f is the final time (in τA units),
�t is the time step (in τA units), nG M is the number of preconditioned GMRES iterations
per Newton step, nNt is the number of Newton iterations per time step, and a, b are work
factors. In Eq. (26), the term nG M × (a + b × nG M) represents the computational work
of the GMRES algorithm, which is composed of two elements: (i) a linear term a nG M

representing the work of routines associated with the GMRES algorithm (such as precon-
ditioning calls), and (ii) a quadratic term b (nG M)2 representing the work of the GMRES
algorithm itself. Although typically b � a (because the preconditioner is initially more ex-
pensive than the GMRES algorithm; see Table II), the quadratic term will dominate if nG M
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FIG. 3. Variation of the tearing mode growth rate γ with the Lundquist number SL for a fixed Reynolds
number Re = 103. Different theoretical scalings are shown for comparison (γ ∼ S−5/6

L for a viscous tearing mode,
and γ ∼ S−3/5

L for an inertial tearing mode).

is large enough. Hence, minimizing the CPU-time for given N , �t , and T f requires mini-
mizing nG M .

The tearing instability described in the previous section (with the same simulation pa-
rameters, unless otherwise specified) is chosen for the subsequent numerical experiments.
Numerical data is averaged over five time steps, unless otherwise stated. CPU times are
obtained in a single 600-MHz Pentium III processor.

5.2.1. Performance in Accuracy

The algorithm has been constructed to be second-order accurate in time. This is demon-
strated numerically in Fig. 4, where the numerical error—computed at T f = 60 τA—is plot-
ted against γ�t (where γ = 0.0435) using the tearing problem in a 64 × 64 grid. The numer-
ical error is measured as ‖Ψ − Ψg‖2, where Ψ is the poloidal flux solution vector obtained
with arbitrary �t , and Ψg is a “gauge” solution obtained with �t = �tCFL = 0.047τA. In
Fig. 4, the error is computed using θ = 0.5. These results demonstrate that the error scales
as �t2.

The capability of the algorithm to take very large implicit time steps without sacrific-
ing accuracy is evidenced in Fig. 5, where time histories of the �2-norm of the magnetic
perturbation log ‖δ�‖2 (global measure) and the current at the grid midpoint j‖( Lx

2 ,
L y

2 )

(local measure) are compared for the second-order implicit code (CN) with a very small
time step (�t = 0.047τA; γ�t = 0.002; 1 Alfvén CFL in a 64 × 64 grid) and a very large
time step (�t = 5τA; γ�t = 0.218; 106 Alfvén CFLs in a 64 × 64 grid). Time histories
obtained with a first-order predictor–corrector explicit solver (EX; see the next section)
and first-order implicit solver [backward Euler (BE)] for a 64 × 64 grid have also been
included for comparison. CN results show excellent agreement under time-step refinement
(time histories are virtually superimposed, despite the fact that the large implicit time step
is much larger than the explicit CFL limit and on the order of the dynamical time scale



30 CHACÓN, KNOLL, AND FINN

0.0100 0.1000 1.0000
0.000010

0.000100

0.001000

0.010000

0.100000

γ∆tt

E
r
ro
r

∆∆tt2 slope

Ψ

FIG. 4. Scaling of numerical error with γ�t (with γ = 0.0436) for the tearing instability in a 64 × 64 grid. The
error is measured at Tf = 60τA by comparing the solution vector with a gauge solution, obtained with �t = �tCFL.

of the problem). EX shows excellent agreement with CN. However, BE shows substantial
differences with both CN and EX, indicating that second-order accuracy in time is crucial
for accuracy when taking large implicit time steps, as expected.

The effect of different time step sizes on the tearing mode growth rate γ is indicated in
Table I. Clearly, the algorithm preserves the accuracy of the solution even for γ�t ∼ 0.44
[i.e., of O(1)], an order of magnitude larger than the γ�t < 0.05 limit characteristic of
linearized semi-implicit implementations [5]. Again, the robustness of the answer is due
to the second-order-accurate time stepping with no operator splitting. Incidentally, we note
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FIG. 5. Time histories of the �2-norm of the magnetic perturbation (global measure) and the current at the
grid center point (local measure) for the tearing instability in a 64 × 64 grid using different Crank–Nicolson (CN)
implicit time steps (�t = 0.047τA , �t = 5τA). Runs obtained with a first-order explicit (EX) and first-order implicit
[backward Euler (BE)] time stepping are included for comparison.
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TABLE I

Tearing Mode Growth Rate γ in a 64 × 64

Grid Using Different Time Steps

�t γ

0.5 τA 0.0436
2.5 τA 0.0432
5 τA 0.0435

10 τA 0.0447

that the theoretical CN error in approximating the exponential growth rate γ for γ�t = 1/2
is ∼2%, consistent with the results in Table I.

5.2.2. Performance in Efficiency

Profiling results obtained for the tearing problem with �t = 5τA in a 64 × 64 grid are
presented in Table II. The most striking feature is that 77% of the CPU time is spent in
the preconditioner. This indicates that the preconditioner—based on an optimal SI/MG
algorithm—is responsible for the bulk of the CPU time. This is consistent with the alternate
viewpoint of considering the Newton/GMRES algorithm as a nonlinear convergence accel-
erator of an otherwise inefficient nonlinear or linearized solver [38]. Such an accelerator,
while ensuring overall nonlinear consistency, should have a small CPU overhead, as shown
in Table II [as a side note, the small CPU overhead of GMRES justifies the previous assump-
tion of b � a in Eq. (26)]. It should also be noted that the Newton/GMRES accelerator, by
converging on an unsplit nonlinear formulation of the equations, allows much larger time
steps than would otherwise be possible with the linearized semi-implicit preconditioner as
a stand-alone solver.

A grid convergence study is performed using the tearing problem. The number of Newton
iterations per time step nNt , the number of GMRES iterations per Newton step nG M , and
the CPU time are monitored for different mesh refinements and time steps [measured in
Alfvén CFL units, �t (CFL) = �t/�tCFL] for a run extending to T f = 30 τA. The results

TABLE II

Breakdown of Total Wall-Clock Time

Percentage Spent in Different Tasks of the

Implicit Algorithm for the Tearing Prob-

lem with ∆t = 5τA in a 64 × 64 Grid

Task % total CPU time

Newton 99
GMRES 94
Preconditioner 77
MG solver 64

Note. CPU time breakdown is inclusive down-
ward, i.e., every task includes all tasks below it.
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TABLE III

Grid Convergence Study with ∆t = 20, 40, 160∆tCFL for the Tearing Instability

with SL = Re = 103

�t Grid �t (τA) nNt nG M
GMRES
time step

CPU time ĈPU

20�tCFL 32 × 32 1.875 3 2.7 8 12.7 1.6
64 × 64 0.9375 3 2.5 7.5 120 16

128 × 128 0.46875 3 2.5 7.5 1128 150
256 × 256 0.234375 3 3.5 10.4 13563 1304

40�tCFL 32 × 32 3.75 3 3.4 10.1 7.5 0.74
64 × 64 1.875 3 3.3 10 72 7.2

128 × 128 0.9375 3 3.5 10.6 723 68
256 × 256 0.46875 3 5 15 9385 625

160�tCFL 32 × 32 15 3.5 6.3 22 3.5 0.16
64 × 64 7.5 3.25 6 19 31 1.6

128 × 128 3.75 3 6 18 277 15
256 × 256 1.875 3 10.3 31 4367 141

Note. Results have been obtained for a run of Tf = 30τA . ĈPU is the CPU time normalized to GMRES
time step

.

are presented in Table III and show the following:

1. The number of Newton iterations per time step remains virtually constant around 3,
only increasing slightly for very large time steps.

2. For fixed �t (CFL), nG M remains small (below 10 iterations even for extremely
long time steps) and virtually constant with mesh refinement (by virtue of the MG pre-
conditioning).

3. For fixed �t (CFL), the CPU time normalized to GMRES
time step = nNt × nG M , ĈPU, in-

creases by ∼9–10 when N = Nx Ny increases by 4. This slightly exceeds the O(N 3/2) scal-
ing expected from Eq. (26) (because �t ∼ �t (CFL)√

N
, and hence ĈPU ∼ N

�t ∼ N 3/2

�t (CFL)
). This

result is consistent with observations in previous work [17] and is due to cache memory
effects as the problem size is increased.

4. For fixed N , GMRES
time step scales vary sublinearly with �t (CFL).

5. For fixed N , ĈPU ∼ [�t (CFL)]−1, as expected from Eq. 26.

The results in Table III suggest that employing the largest time step compatible with ac-
curacy in a given calculation is the most efficient route. Note that for SL = Re = 103, the
performance of the preconditioner degrades slightly for very fine meshes. This is due to
the approximate inversion of the semi-implicit operator PSI described in Section 4.2. The
performance for fine meshes recovers when smaller diffusion coefficients are employed, as
shown in Table IV, obtained for SL = Re = 104.

To gauge the performance of the implicit code against explicit methods, the code has
been adapted to integrate the equations explicitly using Brailovskaya’s first-order accurate,
predictor–corrector explicit time discretization [39]. Van Leer’s total-variation-diminishing
method [40] is employed for monotonic, second-order advection. The elliptic coupling
between vorticity and stream function is inverted at each time step using MG-preconditioned
conjugate gradient (CG), with the previous time step solution as initial guess. This results in
an average of<2 CG iterations per time step (Table V) for a residual convergence tolerance of
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TABLE IV

Grid Convergence Study with SL = Re = 104

�t Grid �t (τA) nNt nG M
GMRES
time step

CPU time ĈPU

20�tCFL 32 × 32 1.875 3 2.6 7.8 12.8 1.6
64 × 64 0.9375 3 2 5.9 102 17.3

128 × 128 0.46875 2.8 1.4 3.8 793 209
256 × 256 0.234375 3 1 3 6537 2179

40�tCFL 32 × 32 3.75 3 3.8 11.5 8.2 0.71
64 × 64 1.875 3 3.3 10 73.6 7.4

128 × 128 0.9375 3 2 6 517 86
256 × 256 0.46875 3 1.6 5 4248 850

160�tCFL 32 × 32 15 3 9.3 28 4.2 0.15
64 × 64 7.5 3 6.3 19 29 1.5

128 × 128 3.75 3.1 4.6 14.2 234 16
256 × 256 1.875 3.6 5.9 21.5 3220 150

10−4 (relative to the �2-norm of the independent term). The explicit time step is taken as [39]

�texp = 0.9 min

[ (
vx,max

�x
+ vy,max

�y
+ Bx,max

�x
+ By,max

�y

)−1

,
min(Re, SL)

2
(

1
�x2 + 1

�y2

)]
, (27)

where (vx , vy) are the velocity components and (Bx , By) are the magnetic field components
(in typical simulations, |v| � |B|).

For the explicit/implicit comparison, the implicit time step is fixed to �t = 5τA. CPU
times for different grid refinements are given in Table V. The implicit-to-explicit time step
ratio is also presented, showing that �t/�texp ∝ √

N , as expected from the explicit wave
CFL restriction (the Courant condition for the diffusion parameters chosen starts being
relevant for

√
N > 500). Note that for the finest grid considered (256 × 256), the implicit

time step is ∼600 times larger than the explicit time step, and CPUexp/CPU ∼ 8. This
demonstrates the efficiency advantage of the implicit method even for moderate (64 × 64)
grid refinements, and more so since there is still room for optimization in the implicit solver
by avoiding the matrix-free implementation of the operator PSI (Section 4.3).

TABLE V

CPU Time Comparison between Implicit and Explicit Time

Algorithms for a Tf = 10τA Run Using the Tearing Problem

Grid Explicit Implicit (�t = 5τA) �t/〈�texp〉

64 × 64 47 s (1.51) 11 s 142
128 × 128 437 s (1.61) 73 s 294
256 × 256 4604 s (1.90) 588 s 578

Note. In parentheses is shown, for the explicit runs, the average number
of CG iterations per time step. The ratio of the implicit time step (�t = 5τA)
to the average explicit time step [Eq. (27)] is also presented.
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6. CONCLUSIONS

An efficient, fully implicit, fully nonlinear, second-order-accurate 2D reduced visco-
resistive MHD solver has been implemented using Jacobian-free Newton–Krylov tech-
niques (GMRES). Convergence is accelerated with a “physics-based” preconditioner, in
which an approximate semi-implicit solution of the original difference equations is em-
ployed. The preconditioner deals with a well-conditioned parabolic system (instead of
hyperbolic, thereby avoiding the wave stiffness) and employs multigrid methods to invert
the resulting operators (thereby removing grid stiffness).

The algorithm has been benchmarked by propagating the supported shear Alfvén waves,
and by modeling resistive instabilities (tearing modes). A grid convergence study of the
implicit solver shows that the performance of the algorithm is very competitive with re-
spect to the problem size [because nG M ∼ O(N 0), with N = Nx Ny] and the time-step size
(because nG M varies very sublinearly with the time step). As a consequence, the algorithm
shows a substantial reduction of the computational expense with increasing time steps, and
a favorable scaling with N .

The implicit algorithm has demonstrated the capability of accurately taking time steps
on the order of the time scale of interest (with γ�t ≈ 0.5). CPU time gains of the im-
plicit approach over explicit methods of an order of magnitude have also been demon-
strated.

Despite the simplicity of the MHD model used here (reduced, 2D), it has provided
valuable insight into the development of implicit solvers for multiple-time-scale systems
supporting stiff waves. The approach presented here should carry over to three-dimensional
MHD models, since no specifics about the dimensionality of the system are involved in the
procedure, and successful three-dimensional applications of MG-preconditioned Newton–
Krylov algorithms exist [41]. Also, the conceptual framework presented here provides
an excellent starting point to develop preconditioners for more complete MHD models
(including, for instance, compressibility, which brings in the fast magnetosonic wave),
since the direct substitution step that is the basis of the preconditioning strategy presented
here can be done with great generality (in fact, it can be argued that the RMHD model
presents a perverse example of a hyperbolic system due to the presence of ∂t∇2	 and,
hence, is a particularly challenging problem).

Another relevant issue is the use of realistic plasma transport parameters (particularly
in three dimensions), which are typically orders of magnitude smaller than those em-
ployed in the numerical experiments presented here. Credible modeling of such con-
ditions requires adaptive mesh refinement capabilities. Recently, Hornung and Pernice
[42] have demonstrated the use of Jacobian-free Newton–Krylov methods on structured
adaptive mesh refinement (SAMR) grids through the development of interfaces between
SAMRAI (the structured adaptive mesh refinement applications infrastructure [43]) and
the PETSc (portable, extensible toolkit for scientific computing [44, 45]) package. The
future emphasis of this project is extending the current implementation to use SAMR
grids.
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